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Introduction

The development of sampling theory of surveys has progressed more or less
inductively. Estimators which appeared to be reasonable have been proposed and
their relative properties carefully studied by analytical and/or empirical methods,
mainly through comparisons of biases and mean square errors. Similar methods
have been employed in the selection of survey designs. Most of the text books on
sampling reflect the above useful approach.

The need for basic deductive theories and for bringing inference in sample
surveys more into the mainstream of statistical inference requires no emphasis. It
is indeed gratifying that several leading statisticians, realizing this need, have made
important contributions in recent years. It is my hope that before too long we will
achieve this goal and thus make the study of sampling theory more exciting and
useful.

In Section 2, we examine the contributions of Godambe and others
towards a unified theory and demonstrate that their results on the unique choice of
an estimator have doubtful value. We briefly consider some alternative approaches
inSection 3, which have been put forth recently and which seem to lead to more
satisfactory result?. It must be emphasized, however, that no one theory is likely
to provide completely satisfactory answers for all situations.

Throughout the paper we confine ourselves to estimation of population
mean or total and neglect non-sampling errors. This does not imply, however, that
non-sampling errors or estimation of other parameters are not important. The
need for suitable methods to measure and control non-sampling errors and to handle
analytic statistics from complex samples (for instance, regression and correlation
coefficients, analysis of variance, contingency table analysis) is being increasingly felt
and, in fact, estimation of totals or means is no longer of primary interest. Several
ingeneous techniques, such as the 'jack-knife' and 'balanced half-sample replication,'
have been proposed for analytic statistics (see Kish and Frankel [1970] ) but much
remains to be done in this area.

• Supported by a research grant from the National Research Council of Canada.
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2. Godambe's Set-up

2.1. Formulation

A survey population U consists of a known number N of distinct units
which are identified through a set of labels, say the integers \,2, . . N. The unit
receiving label V'is denoted by i7,(,/=l, . . A''). Thus all finite populations of
unlabeled units (with known or unknown N) are excluded. One reason usually given
for the exclusion of such populations is that it is not possible to draw probability
samples from unlabeled population. This reasoning, however, is not justifiable and
we refer the reader to Hartley and Rao [1971] for details on the occurrence of
populations with unlabeled units and drawing probability samples from such popu
lations (see also Barnard [1969], p. 707-8).

With each unit Uj an unknown quantity j,- (possibly vector-valued) is
associated which can be made exactly known by observing Uj. The unknown vector

5=(yi> •••> Jn ) is called a parameter and ^ belongs to a well-defined set Q
Tcalled the parameter space). A sample 5 e 5 is an ordered finite sequence
{«!, . . ., M„(a)} of units from U, where z/j=some Uj, i~l, . ,n(s) and the in's may
not be distinct (i.e., same unit may occur two or more times in the sample), 7i{s) is
the sample size and S denotes the collection of all possible samples s. A probability
measure p (.) on S, according to which a sample s is chosen and observed^ is defin
ed and the pair {S,p), or simply p{s), is called the sampling design. Any real-valued
function e{s, 0 ) which depends on_0 only through thoseyj for which U, is in s is
called an estimator. The purpose is to estimate the population total Y=%yj or the
mean 'Y==YIN with the help of an estimator.

As Basu [1969] has pointed out, the above formulation seems to imply the
following ;

(a) A sample space S with just one probability measure p (.) on S ;

(b) a statistic is a special kind of a function of s and the parameter 0.

This formulation is obviously confusing because a statistic should be a function
defined on the sample space and there can be no statistical inference with a single
probability measure. Basu cleared up this confusion by showing that a reformula
tion® leads to the conventional set-up {X, A, Pq) where X is the sample space, A is

the <T-field generated by subsets of X and is a family of probability measures

1. We confine ourselves here to non-sequential sampling.

,2. Pathak (see Basu [1969]' P. 453) an(J Haniirav ([1966], P. 196) have also given
similar reformulations. '
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indexed by the parameter The sample is ^s={s,_y.s ) where '=(yi, •• •, yn\s))
and y/ is the j;-value of ui, i.e. s together with the associated observation . For

instance, if

s=(C/2, and' >'j=3, >,,==6 (say),

then

^;=(V6,3)...

The sample space Xis the set of all possible samples x, and Ais the a-field generat
ed by one-point sets of X. Let Qo: denote the set ofparameter points B_ which are
consistent with a given sample (.e., for all 6i eQ^, the co-ordinates of6 corres
ponding to the. units in s are equal to the observed j-values for these units. Then
the probability of observing is giveen by

„ , • f/'MforlsQ,P0_(&)-|q otherwise

Equation (1) also defines the likelihood of ^ given Xs, denoted by L (^ | &)•

There seems to be agreement among statisticians that the likelihood
function plays a basic role in statistical inference. Let us, therefore, examine God-
ambe's hkelihood (1). It is clear that (1) merely says that all sets of population
values e containing observed sample values are equally tenable, i.e., the lik^hood is
completely imiformative on the unobserved y-values and, hence, on 7 or y • The
following quotation throws more light on the difficulties associated with Godambe's
likelihood : "In situations like the one we are considering where the full hkelihood
does not satisfy our purpose, we may have to depend ona statistic which for every
observed value supplies information (however poor it may be) on parameters of
interest. In choosing a statistic for this purpose we may be guided by /(0, T), the
information due to randomization. Unfortunately, no unique choice T which
maximizes 1(0, T) may be possible unless some further restrictions are placed on the
class of statistics to be considered", G.R. Rao [1970] (see also Kempthorne [1969, p.
685] and Dempster [1968, p. 24] for similar remarks). It is clear, therefore, that no
meaningful likelihood inference on 0 or Yis possible unless we are prepared to
ignore some aspects of the sample and thus make the sample non-unique. The
decision on which aspects of the sample to be ignored depends on the situation
at hand and, moreover, there is no unique way of going from the sample to the
population (see Section 3).

Basu has rigorously proved that the minimal sufficient statistic is thesetof
distinct units s together with the associated ;^-values ;

®,*r=[5*, ] where s*is the set of distinct units in s, say(U/^, • • t/yW(s)
where/; <h< , . , < Jvf,^,v(syis the number of distinct xinits ins (called the
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effective sample size) and However, 2s* is not 'complete'
so that infinitely many unbiased estimators of Y (or f) which are all functions of

2s* exist. Moreover, for many of the sampling designs used in practice, Xs* and x,
(without regard to order of selection) ^re equal and, even for the other designs, the
minimal sufficient statistic is usually too 'wide'.

The possibility that for some sampling designs Zs*y^^s has lead to quite a
few papers in which the main idea is as follows ; Given an unbiased estimator
e{s, 6) of Y, the estimator ei(j*, ^)=£[6(5, 0) | 2s*] is also unbiased and F(eiXF(e)
with strict inequality at least once by the Rao-Blackwell theorem. This idea has lead
to useful estimators in some situations, for instance, unordering Des Raj's estimator
gives Murthy's estimator which is as simple to compute as the former when the
sample size n =2. However, oftentimes the authors of some of these papers seem
to be somewhat over-enthusiastic in this pursuit as little attention has been paid to
the following facts : (1) Often ej.may be computationally much more cumbersome
than e ; for instance, in pps sampling with replaceriient; (2) Corresponding sampling
designs (with 2s=2s*), which are equally feasible and which lead to estimators
more efficient than Ci for the same expected cost, might exist ; for instance, the
sample mean y in simple random sampling {srs) without replacement has smaller
variance than Basu's estimator + . . .+y}y(^s))K^) srs with replace
ment for the sanie expected cost, assuming a linear cost function ; (3) Considerations
other than efficiency might dictate the selection of a sampling design with 2s7^2s*

. and an estimator e(s, ^) ; for instance, in multistage sampling the primaries are
often selected with pps with replacement and the customary estimator of Y based
on all the primary draws is used mainly because an unbiased variance estimator is
obtained simply from the estimators of the selected primary totals, provided sub-
sampling is done independently each time a primary is selected.

2.2. Choice of Estimator

Following Horvitz and Thompson [1952], Godambe [1955] defined the
'most general' linear^ estimator of F as

e^{s,6)= 2 b.syi .. (2)
Ujzs

where the coefficients bs} are defined in advance for all possible s and all U, e s. It
is customary, however, to consider the class defined by

e,{s*,e)^ 2 b,..y, .. (3)
Ujss' '

instead of (2), because for each unbiased estimator of the form (2) there exists, by
the Rao-Blackwell theorem, an unbiased estimator of type (3) which is at least as
efficient as the former. Godambe proved the non-existence of a best (minimum
variance) estimator in the class of linear unbiased estimators (2) (or 3) for any

3. Basu [1970] objected the usage of the term 'linear' because the sample space X is not
linear and any estimator is a functioji on X, He proposed the term 'generalized
linear' instead.



•73

sampling design (excepting those in which no two j withi>(j) > 0have at least one
common and one uncommon unit). In this connection, it may be appropriate to
comment on Godambe's constant criticism of Neyman [1934], Cochran (1953),
Sukhatme [1954] and others : "the fallacy of Neyman's [1934] argument" etcetra.
Neyman considered simple random sampling [n(5)=« for all s] and linear unbiased
estimators of the form

e6==^i3'i'+ •••+br,yn' (4)

where bi is apreselected constant to be attached to y'i. He proved (by appealing
to the Gauss-Markov theorem) that the sample mean y is the best estimator in the
above class (which is a sub-class of (2).). This positive result for a sub-class
(however trivial it may be) in no way contradicts Godambe's negative result for the
wider class (2). It is obvious that Neyman was not considering the class (2) (or 3)
for which Godambe (rightly) claims priority ! Similarly, Cochran and Sukhatme
have clearly stated their assumptions and defined the class of estimators they were
considering while dealing with conditions under which ratio or regression estimator
is optimum. Itmay be noted that Godambe's class of estimators cannot be imple
mented, unlike Neyman's, for sampling from populations with unlabeled units.

We now examine the criteria ofoptimality that have been proposed for the
selection of estimator.

Admissibility. In a class of unbiased estimators of Y, an estimator
belonging to the class is said to be admissible if for every other estimator t in the
class F(?i)<F(0 for at least one 6eO. In view of the minimal sufficiency of Xs*
it, therefore, follows that any admissible estimator is necessarily a function of$s*
and that any estimator which is not a function of 31s* is inadmissible (by the Rao-
Blackwell theorem). However, as pointed out earlier in Section 2.1, one should
not discard inadmissible estimators without objective examination. •

Godambe proved that the Horvitz-Thompson {H —T) estimator of Y, given

by 5^ht ^ ^ yil'"'}' i® admissible in the class of linear unbiased estimators (2) for
Ujss

any sampling design p(s) with inclusion probabilities 7r,>0 for all UjsU, provided
(the iV-dimensional Eucledian space) or any interval around the origin of

rN where a;<0, p,>0). This result has been considerably gene
ralized by V.M. Joshi in aseries of papers, by relaxing linearity and/or unbiasedness.
Joshi has also shown the admissibility of a number of other estimators (including
Lahiri's estimator, regression estimator, sample mean) and, I understand, he has
recently proved the admissibility of Murthy's and related estimators. One might be
tempted therefore, to conjecture that any linear unbiased estimator of 7which is a
non-zero function of Xs* is admissible', but this is not true (Dharmadhikari [1969],
Joshi [1969]) ; however, the counter examples proposed are artificial. In any case,
the criterion of admissibility does not appear to be sufiiciently selective for distin
guishing between the merits of estimators,
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Since the criterion of admissibility has riot been conclusive; several new
criteria, which give rise to a unique choice of estimator, have been put forth in recent
years. We now examine some of these criteria in turn.

Necessary bestness and hyper-admissibility. The criterion of necessary best-
ness boils down to the following ; an estimator /j belonging to a class of unbiased
estimators of Yis said to be the necessary best estimator if for every other ^unbiased
estimator in that class V(ti)^V(t) in each of the N principal hyper-surfaces (phs) of
dimension one, viz., fyi, (0, 0,...,0, j with strict inequality for at least

A

one phs of dimension one. It is easily seen that the H-T estimator, is the

necessary best estimator in the linear class (2) for any sampling design with 7r,>0
for all Ui e U. The criterion of hyper-admissibility, on the other hand, is defined as
follows : an estimator in a class of unbiased estimators of Y is hyper-admissible

in that class if it is admissible inside each of the 2^ —1 possible phs's in It is
evident that the H-T estimator is the unique hyper-admissible estimator in class (2)

A A

because 7^^, is hyper-admissible and, from the necessary bestness of'7^^-,, every

other unbiased estimator in (2) is inadmissible in at least one of the phs's of dimen
sion one.

As a justification for hyper-admissibility, Hanurav (1968) stated that, in
practice, often one is interested in estimating not only Y but also the totals of sub-
populations or domains and that these domains should all be admissibly estimable .
by a single estimator. I don't think anyone questions the importance of domain

estimation, but it is obviously unrealistic to consider all the 2^—1 possible phs's
(domains) because the number of domains of practical interest will be very much

smaller than 2^ —1 and the sizes of such domains will be large, although the actual
number of units in a domain is unknown. The domains of size one (which are
utterly uninteresting in practice) play the key role in arriving at the unique choice.
If we exclude these domains, the uniqueness result may no longer hold and, in fact,
even the 'necessary best estimator of second order-' (using only phs's of dimension
two) does not exif*.

Further evidence on the weakness of hyper-admissibility is provided by the
A A

result that the Horvitz-Thompson estimator of variance of y^^say ), which
is known to have some undesirable properties (including taking negative values
often), is uniquely hyper-admissible Rao and Singh [1969] in a general class of

A A

quadratic unbiased estimators of V(Y ). It may be noted that F(T ) is well-
HT HT

behaved always non.negative in phs of dimension one .

A

4. Prabhu-Ajgaonkar's [1969] result that Y is also the necessary estimator of second
order is incorrect. H*
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If we take these criteria seriously, we should be using Yjjt for any sanip-
ing desigQ irrespective of whether there is any positive correlation between the yj

A

and TZj or not. It is obvious, however, that Yjjj' could lead to nonsensical results

when y, and ttj are unrelated or poorly correlated—seeRao [1966] for somepractical
situations and Basu [1970] for a delightful 'circus' example. In such situations one
should, of course, employ alternative estimators such as the sample mean even if

A

they are biased (Rao [1966]). Horvitz and Thompson [1952] proposed only
for those situations where yi and tt,- are strongly related (positively).

Linear sufficiency. Barnard [1963] introduced the concept of linear suffi
ciency in least squares which reduced to the following definition in the case of esti
mating a scalar parameter [x ; a statistic /j is linear sufficient for [x if for every other
statistic with covf/i, we have Clearly, this deiSnition is appli
cable to our situation without any change, even when and/or are non-linear.
Godambe [1966], however, modified it, without any reason, by changing
"covfVi, =0" to the following (see his definition 4.2) : two estimators e^(s,9)

and belonging to class (2) are said to be independent
of each other if Xbsjb'sj^O for every seS with p{s)^0. The two definitions
are obviously different. Using his definition, Godambe proved that, for any fixed
sample size design (n(s)=n for all5), the only unbiased estimator of Y in class (2)
which is linear sufficient and which satisfies the 'principle of censorin^' (viz., infer
ence should not depend on the probabilities of the undrawn s) is given by

...(5)

On the other hand, using Barnard's original definition, M. K. Ramakrishnan
A

(a former student of the author) has shown that Yjjj is an unbiased linear sufficient
estimator of Yin class (2), but not unique. I do not know how appropriate the
concept of linear sufficiency is in survey sampling, but I see no reason for changing
the original definition.

Godambe [1966] proposed the concept of distribution-free sufficiency to
handle non-linear estimators e(s,Q), by defining the independence between two
estimators e rs, 0) and e (s, 6) as E (e e s)=E (e ^)E {e s) for every seS

1 2 \ \ 2 ^ 1 \ 2
where E ( . 15) denotes the expectation when s is fixed and Us a priori distri
bution for 0 which assumes that the unknown variate values y ... p frea priori

r N

independent. He proved that e is an unbiased distribution-free sufficien estima-
h • • .
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tor. However, the class Cofpriors ? is unreasonable because it implies that one's
prior information on (say) would be precisely the same whether y^ were
known or unknown. Even if one is willing to accept Godambe's definition, his
result has little value as Kale [1967J has shown that any linear estimator belonging
te class (3) is distribution-free sufficient.

Bayesian sufficiency. Let A(^denote some prior distribution on 0, then, using the

likelihood (1) , the posterior distribution of e given ;cs is

(h{e) for0£Q^
h(0 IX,) ^ (6)

0 otherwise,

i.e., the posterior dlstribatioii is nothing but th3 restriction of prior to the set Q-c.
A statistics ?(:w) is Bayes sufficient for y if the posterior distribution depends on
only through t(:^) . This definition, of course, is simply a Bayesian version of the
classical definition of sufficiency. Assuming the class C of priors Godambe
showed that the statistic.

(s*

is Bayes sufficient for 7 and then imposing origin and scale invariance, he arrived at
the following result : in uniquely the Bayes sufficient, origin and scale

invariant estimator of Y for any sampling design. He has also considered the case
where supplementary information Zj., , (attached to the A''units in U) is

available and, assuming the class C of priors I conditional on Zi, z he
^I

proved that for any sampling design the ratio estimator ^ isuniquely the

Bayes sufficient, scale invariant estimator and the difference estimator N(y , ,-z , J
v(s) v(sy

+Z is uniquely the Bayes sufficient origin invariant estimator, where Z isthe popula
tion total of z/s. These impressive results, however, heavily depend on the choice
of prior and, as mentioned before, the class C of priors 5 is unreasonable. To
illustrate this, we consider two reasonable classes of priors which lead to different
results. First, when labels-y are not expected to carry information regarding the
associated y '̂s, it may be reasonable to assume an exchangeable prior on 6 {i,e., a
prior distribution symmetric in the co-ordinates jj) ; then the posterior distribution
of ^given^ does not depend on the label-set 5 but only onjs* ={yi : Uj e 5} and,
in this case, {y, : Uj £ j} is Bayes sufficient for Y (Solmon and Zacks [1970]). A
broad class of exchangeable priors Ci can be generated by assuming that the y^ are
probabilistically independent and indentically distributed conditional on some para
meterja and then averaging over the marginal (prior) distribution of ix (Ericson

[1969]). Similarly, if supplementary information (zj, is available, one could

get a broad class of priors Q assuming that the yj are probabilistically independent
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conditional on Zj, and some parameterjx^and then averaging over the marginal
(prior) distribution of For instance, the often-used super-population model

. E{yj\ V{yi\ Zi)=aZi<',g'^0 ,

cov (yj, yk 1^3, Zfc)=0,;7^/c=l, N

where (x =(P, a, g) is unknown, would lead to a prior for^which belongs to the
above^ass, by assuming aprior on j^and normality for the yj (conditional on the

Since the sampling design p(s) does not enter into the'̂ definition of it
is clear from (6) that Bayesian analysis does not depend on the way the data has
been collected. The 'likelihood principal' (which says that the information supplied
by Xs is the likelihood function) when apphed to (1) also leads to the same conclus
ion. This revolutionary conclusion is in direct [conflict with current practice.
The alternative approaches in Section 3 throw additional light on this dilemma,
but I don't think that theproponents of the likelihood principle intended that it
should ever be applied to likelihoods not involving the parameter(s) of interest.

Fiducial estimation. Since the posterior of is independent of the
sampling design pis), Godambe [1969] introduced fiducial estimation into survey
sampling and demonstrated that, under certain conditions, the fiducial distribution
depends on p{s), for simple random sampling without replacement. Barnard
[1969, p. 709], however, says, "...I must admit I find it difiicult to see how
Dr. Godambe's conditions could arise in practice". Zacks [1970] argued that
fiducial distributions should be derived within a general group invariance framework
and proved that no fiducial estimator of Y exists, under the group oLreal transla
tions and squared-error loss.

2.3. Choice of design

Suppose e is an estimator of Y associated with a sampling design d, then
i7=(e, d) is called a strategy. Let L{H) denote a class of equi-cost strategies
involving designs d^ and d^ and unbiased estimators e belonging to class (2) (or 3).
The design is said to be better than 4 if for every strategy H^^ie^, 4) ^HH),
there exists a strategy Hi—ie^, d^zL{H) such that F(ii Id^^V{e2, ! rf2)for allj^s.ti
with strict inequality at least once. Using this definition, it is unlikely that one
could even show that srs without replacement is better than srs with replacement.
It is, therefore, sensible to use a practical approach by comparing the relative
efiiciencies of 'good' estimators in d^ and 4 for the same expected cost. This
approach could lead to clear-cut answers for some simple designs {e.g., Seth and
Rao [1964]), but, more often than not, it would be necessary to carry out extensive
empirical or semi-empirical studies on natural populations with a view to spotting
out reasonably good strategies under different situations commonly met with in
practice (Rao and Bayless [1969]). Other meaningful criLeria, such as efiiciency of
variance estimator, could throw further light on the choice of strategy.
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Using the super-population model (7) with g^2 and the criterion of
average variance, Godambe [1955] has shown that the strategy satisfying

A

for alU, 7ri(J)=v„z,/Z and e= 7^j(60 is 'optimum' in L(H), where Vg is the
expected sample, size for a given budget and the average is over all finite populations
that can be drawn from the infinite super-population. This result, however, has
limited scope because no 'optimum' strategy exists for g#2. Moreover,
assuming (7) with g=2, Rao and Bayless [1969] have shown that the loss in average
efficiency of Murthy's strategy over the optimum strategy is negligible for a wide
variety of natural z-populations.

Recently, Basu [1970] and Royall [1970] advocated strategies involving
purposive selection of units, the former using Bayesian argument and the latter
employing the super-population model (7) with known g and'the criterion of average
mean square error. We plan to examine these results in a subsequent paper.

3. Alternative Approaches

We now briefly consider some alternative approaches; the reader is referred
to the relevant papers for details.

srs without replacement. In the Hartley-Rao [1968, 1969] approach, it is
assiuned that the character y is measured on a known scale whh a finite set of scale
points {j'l*, ..., *} where T can be arbitrarily large. This, of course, simply

corresponds to the realities of practice. The population mean Y may be
_ T

written as 7 = S (NtlN^y* where number of units 17,• in the population
t=\

with yj—yc, i%Ni=N). Let/7j denote the number of units having the value j,*
in the sample of fixed size H, so that and %nt=n. If we ignore the label-set
s* from the sample jCs* and consider the likelihood based on j'a*=(«i, ..., ny), we get

n(i) ^3,
en

which depends on all the parameters of interest. No The loss of information
due to ignoring s* may be regarded as negligible if there is no evidence of any

relationship between the labels j and corresponding yj ; there is no loss of informa
tion if the N units are labeled at random (see Hartley and Rao [1971]). C. R. Rao.
[1970] has given another justification for ignoring 5*. In the present situation of
srs, it seems appropriate to ignore s*, but it should be noted that there is no
unique way of goingfrom sample to population.
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Since (8) is the multi-dimensional hypergeometric distribution, the statistic
(/Zx, is sufficient and 'complete'. Consequently, the sample mean

is the U. M. V. unbiased estimator of Y in the class of estimators which.depend

only on «2')- Royall [1968] has obtained a similar result.

Maximization of the likelihood (8) subject to

Nt>0,tNtr=N ...(9)

A

leads to the maximum likelihood estimators (m.l.e.) Nt*==N{niln) and
A A

Y = %{N\jN)y* =2/, provided #/« is an inteteger ; when is not integral, the
A

m.l.e. of Nj's will be found to be rounded up and down version of iV/s given above
and y will no longer be the m.l.e. of y. One might quite rightly say that maximi
zation "of (8) subject to (9) is not very realistic as, additional information on the

may be available, especially when T is small and the Nt are parameters of
interest. Conceptually there is no problem, however, because one could maximize
(8) subject to (9) and any additional restrictions on the Nt ; however, the actual
solution might be quite formidable.

Assuming a compound-multinomial prior for the Nt, Hartley and Rao
obtained the posterior distribution of the Nt using the likelihood (8) ; we refer the
reader to Hartley and Rao [1968, 1969] for details on the Bayesian estimation of
Ericson [1969] assumed an exchangeable prior for (ji,..., j'Ar)in whichcase the prior
for (Ni, Nx) is compound-multinomial and the conditional distiibution
P(«i, ..., tlxINi, ...,Nx) is given by(8) for any sampling design p{s). Consequently,
the posterior distribution of the Nt obtained by Hartley and Rao is the same as that
of Ericson; however, note that the two approaches are fundamentally different
(Solomon and Zacks [1970], p. 659).

Kempthorne [1969] has given another justification for the sample mean ^
in si-s without replacement. He has shown that y has minimum average variance,
for permutations of values attached to the units, in Godambe's class of unbiased
estimators (3). Minimization of average variance over the N! permutations of
(>i> —, Jat) makes sense because in the present situation one could suppose that the
unknown set of N :i;-values are associated with the labels of the units in an unknown
way.

srs with replacement. A simple random sample s of fixed size n is drawn
with replacement and let and Vi(s) respectively denote the number of distinct
units in\s and the number of distinct units having the value yt* in s, {I,vt{s)=v(s))
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If we ignore the lab^set s* and consider the likehhood based on y/
v^(s)], the m.l.e. of Yis identical to Basu's estimator y = Sb((5)M^)]3^ *

provided Nlv(s) is integral ; the m.l.e of Nt's will be rounded up and down
version of the Nt=N[Vi{s)] when Niv{s) is not integral. G. R. Rao [1970] has given
a slightly different argument to justify Basu's estimator.

It is important to note that the identification labels are used at the identical
state to get y/ ,but the label-set s* is ignored at the estimation stage. Similarly, if
a concommitant variate z with a finite set of scale-points {zj* ,zl* }is attached
to the units, the labels are used to arrive at the sample values y?,{=number
of units in the sample which have z«* and jt* attached to them 0=1, ...,/;

S2/7i,=n), but the label-set s* is ignored at the estimation stage.

Assuming that only the population mean Z ofthe z/s is known, Hartley and
Rao [1968] have shown that the likelihood based on the itu leads to an m.l.e.
of7which is closely related to the customary regression estimator for large n
and N>>n-

Unequal probability sampling (uni-stage designs). C.R. Rao [1970] used
Kempthorne's approach to justify the H-T estimator in those situations where the
V-are approximately proportional to the corresponding tt,- (for instance, when the
z- are approximately proportional to the yj and is chosen proportional to z,).
He considered the set of parameter values {r.^Wn, .. , by obtamedpermuta-
tions of Wi, holding ttj, ..., Tr^fixed, where Wj—yilnj. This obviously makes
'sense because when (approximately), w/s will be unrelated to^ the
71—a situation similar to srs. If we suspect that may be related to 7t,-^ (say)
or unrelated to (whichcouldhappeninp.p.s. sampling with multiple characters, Rao
[1966]) the average is taken over a different set of parameter values appropriate to

•the situation at hand ; for instance, when yj is expected to be unrelated or poorly
correlated to Jtj, it would make sense to take Wj=yj and consider the set
(TTiyn,

Hartley and Rao [1969] have made a start with maximum likelihood
estimation for unequal probability sampling, using their approach and aparametn-
zation similar to C. R. Rao's, appropriate to the situation at hand. They consider-S onl'yp.p.s. sampling with replacement in their 1969 paper, but further work is
in progress.

Stratified sampling. Strata are regarded as separate populations, each

of strata differences. Extension of the above results to stratified sampling is, therefore.
Straightforward.
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Hartley and Rao [1969] briefly considered two-stage sampling in which the
. primary labels may be regarded as informative. They indicated some difficulties

and the need for further work.

Parametric models. The above approaches are essentially distribution-
free. Barnard [1969] suggested that we should go a step further by assuming super-
population models of the type (7) with specific distributional assumptions on the y,
and then applying standard likelihood procedures for comparing alternative estima
tors. Kalbfleisch and Sprott [1969] have used this approach in some simple
situations. It would be difficult to implement Barnard's suggestion in large-scale
surveys, but we should exploit it at least in smaller surveys of specialized scope.

4. Summary

The paper presents a critical discussion oh the contributions of Godambe
• and others towards a unified theory of sampling from finite populations vis-a-vis

some alternative approaches which have been put forth recently by several other
researchers.
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